STW OLBURGEN / AVIKO POTATO PROCESSING
PHOSPAQ™ AND AnammoPAQ™
Combining two technologies to maximize a sustainable effluent treatment at low total cost of ownership.

We were convinced by the low power consumption, the recovery of resources and the limited space required. The performance of the plant shows we have made the right decision.

THE CHALLENGE
- Stringent requirements for nitrogen and phosphorus
- Minimize total costs of ownership
- Maximize sustainability

OVIVO’S SOLUTION
- PHOSPAQ™ process converts phosphate to struvite
- AnammoPAQ™ process converts ammonium to N₂

BENEFITS
- Annual savings on discharge costs (> EUR 1.5 million)
- Comply with stricter EU regulations for nitrogen and phosphorous
- Production of 400 ton/year fertilizer (struvite)
- Compact process, smaller reactor volume (1,200 m³ instead of 7,000 m³)
- Less sludge production per year (600 tons)

Aviko potato processing
- 100 tons/h potatoes
- Wastewater stream = 160,000 p.e.

Anaerobic pre-treatment
- 85% reduction of COD
- Biogas conversion into heat & electricity (600 kWe)

UASB effluent
- 1,600 kg COD/day
- 1,000 kg NH₄-N/day
- 200 kg PO₄-P/day

PHOSPAQ™ process
- 80% PO₄-P reduction
- 400 tons/year struvite suitable as fertilizer
- 70% COD removal

AmmamoPAQ™ process
- 90% NH₄-N reduction
THE CHALLENGE

Since 1982, the wastewater of the AVIKO potato processing plant in Steenderen, the Netherlands, has been treated by the municipal STW Olburgen, based on anaerobic UASB technology. Aviko produces a wide variety of potato products. The wastewater contains proteins, starch and phosphate equivalent to a population of 160,000 persons.

In the UASB reactors the organic components (COD) is converted into biogas that is reused by conversion into electricity and heat (600 kWe). The effluent from the UASB reactors is discharged to the sewage treatment plant (Waterstromen) and still contains considerable amounts of COD, NH₄ and PO₄ which represents discharge costs of over EUR 1.5 million per year.

In 2003 it was decided to give Waterstromen the task to reduce the phosphate and nitrogen content of the anaerobic effluent, due to the new EWFD regulations. The challenge was to find a suitable process to remove these high amounts of phosphate and nitrogen at the lowest total cost of ownership, while maximizing sustainability.

OVIVO’S SOLUTION

A comprehensive feasibility study by Waterstromen resulted in the selection of the PHOSPAQ™ process combined with the AnammoPAQ™ process to achieve their goals.

In the PHOSPAQ™ process effluent from the UASB reactors, with a small reject water stream coming from sludge dewatering on the STW, is fed to the PHOSPAQ™ reactor. Phosphorus and residual COD removal is combined in the reactor by means of aerated crystallization. Under addition of MgO, phosphate is removed by precipitation as struvite. The struvite produced is harvested from the bottom of the reactor. One of the advantages is the synergy obtained by combining P- and COD removal in the PHOSPAQ™ reactor. The design of the reactor ensures thorough mixing and a good struvite quality.

In the AnammoPAQ™ process ammonium is directly converted into nitrogen-gas by a combination of AOB and Anammox bacteria, in a single stage.

The effluent water is discharged to the sewage works and further treated to reach surface water discharge quality.

THE BENEFIT

The combination of PHOSPAQ™ and AnammoPAQ™ processes provides many advantages. The plant offers Waterstromen a yearly saving on discharge costs of EUR 1.5 million. In addition, the removal of phosphorous and ammonium is over 80% and over 90% respectively. As a consequence, STW Olburgen complies with the stricter discharge limits for N and P.

PROCESS ADVANTAGES

- Maximum generation of biogas, since no COD is needed for NH4 - removal
- Energy savings up to 60% since less aeration is required
- Struvite complies with EU fertilizer standards and can be used as slow-release fertilizer

For more information contact your local Water Treatment Expert at the number

USA 512-834-6042

info@ovivowater.com
www.ovivowater.com